Geospatial Challenges in the Asia-Pacific Region

Masahiko NAGAI

Center for Spatial Information Science, The University of Tokyo, Japan

Challenges in the Asia-Pacific Region Date: Wednesday 9 December, 2015

DInSAR and ALOS2 images

1970 - 03 October 2014

04 October 2014 – 20 February 2015

21 February 2015 – 02 May 2015

Topography of Kathmandu Valley

Summary of DInSAR results

8

Accuracy Assessment

1. Comparison of LOS co-seismic with GPS co-seismic

GPS co-seismic information from NASA

Reference:

http://aria-share.jpl.nasa.gov/events/20150425-Nepal EQ/GPS/20150425Nepal ARIA Rapid Offsets v1.txt

2. Comparison of LOS co-seismic with fitting curve

R-square measures of how close of observed points and fitting curve as coefficient of determination

1) Comparison of LOS co-seismic with GPS co-seismic

• The LOS results were compared to GPS in vertical dimension. The results showed difference between vertical dimension of GPS and LOS was less than 20 cm. The interferogram of HV image and short time interval was the closest value less than 13 cm different between GPS and LOS

2) Comparison of LOS co-seismic with fitting curve

1.1

Observed premis compare with first curve (Meshers to Lasters).

Co-seismic interferograms with correlation and R² of line of sight

Co-Seismic	Average				
interferograms	correlation	S to N	W to E		
Img1HH - Img3HH - DEM	E1	0.0527	0.1092	0.4215	210 day
Img1HV - Img3HV - DEM	E2	0.1107	0.9969	0.9937	210 day
Img2HH - Img3HH - DEM	E3	0.0740	0.9968	0.9589	70 days
Img2HV -Img3HV - DEM	E4	0.1275	0.9975	0.9947	70 days

Based on GMTSAR using cross correlation algorithm (xcorr) for registration. "xcorr" uses window size of 64 pixels and has never failed to provide accurate co-registration even in cases where the interferometric coherence is close to zero.

 $\gamma = -3E \cdot 14x^{\prime} + 7E \cdot 11x^{\prime} - 6E \cdot 08x^{\prime} + 3E \cdot 05x^{\prime} - 0.0078x^{\prime} + 1.2701x + 1123.7$

Mobile GPS Log on 11 March, at Tokyo

Data is provided by 混雑統計(R) ZENRIN DataCom CO., LTD

How to Measure the Location of and Track Mobile Phone Users?

Bangkok Taxi Probe's Big Data Processing for Traffic Hotspot Analysis and Visualization Taxi in "TSQUARE" Group

Probe vehicles is equipped with GPS device and data communication device to monitor traffic situation.

© Project : Toyota Tsusho Electronic Thailand Co. Ltd

© Ranjit and Nagai, AIT

"TSQUARE" VICS/RTIC traffic service in Thailand

Utilize GPS data from taxis as the main source. Capture data every 3 ~ 5 seconds. Traffic conditions can be monitored accurately even for narrower streets.

© Project : Toyota Tsusho Electronic Thailand Co. Ltd

"TSQUARE" VICS/RTIC traffic service in Thailand

GPS data from taxis (Taxi Probe Data) can monitor traffic condition of detailed streets.

© Project : Toyota Tsusho Electronic Thailand Co. Ltd

"Taxi Probe" data for "Flood"

© Project : Toyota Tsusho Electronic Thailand Co. Ltd

Comparison between Normal and Flood

Normal: 19/03/2014

Flood: 22/01/2014

© Project : NTT Data, the University of Tokyo, Toyota Tsusho Electronic Thailand Co. Ltd

Water coverage in Thailand

$(2005/01/01 \sim 2015/01/17)$

Detection of Road Height

- At present the most accurate collection of terrain data over large geographic areas is done with airborne LiDAR
- High quality DEM (Digital Elevation Model) is requisite for urban
 - Data is available but not accurate
- Urban Canyon and many different type of occlusion, Airborne LiDAR cant be used
- Mobile Mapping Systems(MMS) can provide a solution in creating a precise DEM in Urban areas

GNSS Experiment in Bangkok

- Baseline was upto 13 km
- Total area planned was 75.5 km and surveyed was 90 km
- Receivers used (Specification)
 - Trimble NetR9 (GPS, GLONASS, GALELIO, QZSS and BEIDOU)
 - Javad Sigma (GPS and GLONASS)
 - GoPro Video camera
 - Broadcom WICED[™] Sense Bluetooth Smart Sensor Development Kit
 - Humidity
 - Temperature

SkyPlot and	Satellite	Visibility
-------------	-----------	------------

- Elevation Mask angle: 15 degree
- 19 valid visible Satellites

Satellite Constellations	Visible number		
GPS	5		
GLONASS	4		
GALELIO	1		
QZSS	1		
BeiDou	8		

Comparison between Positioning Modes

- Elevation Mask angle: 15 degree
- 19 valid visible Satellites

Fix Rtae (%)

96

98.8

Positioning Mode

Kinematic

DGNSS

Algorithm Results

DEM generated from GNSS data

Without filter

With additional setting in filter

With filter

Set up CO₂ sensor on vehicle

The portable will be set up in front and on the roof top of the vehicle, above the ground level about 1.5 meters.

Time : May 16, 2012 5:07:58 AM CO2 amount : 2612 ppm Latitude : 14.07963141 Longitude : 100.61229217 Count : 16 NumPoint : 1

Recording data

- The application is set to record data every 2 minutes.
- If drive car with a constant speed at 30 km/h, that means the application will record data every 1 km.

Mobile Environmental Monitoring

Interpolation Method:

Inverse Distance Weighted (IDW)
Kriging

Grid Size:

♦ fxf km □ 2x2 km

Submit Reset

Pacifi of measurement 0 - 200 -point 200 - 400 ppm 400 - 600 ppm 600 - 600 ppm 1000 - 1400 ppm 1000 - 1400 ppm 1000 - 1400 ppm 1000 - 1400 ppm 1000 - 2000 ppm 2000 - 2000 ppm 2000 - 2400 ppm

Transportation Modes Detection in Bangkok Using GPS Logger Data and GIS Data

© Kritiyutanont and Nagai, AIT

GPS Logger

Time stamp

id A	userid	sampleid	devicenc	time_stamp	latitude	longitude	altitude	elapsed_time	distance(m)	velocity(m/s)	velocity(km/h)	bearing(deg)
1	cu02	2	165609	2014-09-30 00:00:01	13.903672	100.655083	14.21	NULL	NULL	NULL	NULL	NULL
2	cu02	2	165609	2014-09-30 00:00:06	13.903664	100.655121	15.15	5	4.2	0.84	3.02	102.24
3	cu02	2	165609	2014-09-30 00:00:11	13.903646	100.655174	20.77	5	6.06	1.21	4.36	109.28
4	cu02	2	165609	2014-09-30 00:00:16	13.90361	100.655205	26.48	5	5.22	1.04	3.76	140.11
5	cu02	2	165609	2014-09-30 00:00:21	13.903586	100.655251	34.86	5	5.64	1.13	4.06	118.26
6	cu02	2	165609	2014-09-30 00:00:26	13.903571	100.655228	31.33	5	2.99	0.6	2.15	236.1
7	cu02	2	165609	2014-09-30 00:00:32	13.903547	100.655174	21.2	6	6.41	1.07	3.85	245.4
8	cu02	2	165609	2014-09-30 00:00:37	13.903547	100.655174	21.2	5	0	0	0	0
9	cu02	2	165609	2014-09-30 00:00:42	13.903547	100.655174	21.2	5	0	0	0	0
10	cu02	2	165609	2014-09-30 00:00:47	13.903547	100.655174	21.2	5	0	0	0	0
11	cu02	2	165609	2014-09-30 00:00:52	13.903547	100.655174	21.2	5	0	0	0	0

Classification Features

Category	Features	Significance			
	Distance	Distance of a segment			
	MaxVi	The maximal velocity of a segment			
Basic Features	MaxAi	The maximal acceleration of a segment			
Dasie reatares	AV	Average velocity of a segment			
	Time	Travel time of each segment			
	Point	Total point of each segment			
Advanced	HCR	Heading Change Rate			
Features	SR	Stop Rate			
	Pit	Point in Subway entrances			
	PiR	Point in River and Canal			
Spatial Features	PiL	Point in Sky train line			
	PiP	Point in Sky train platform			

Transportation Modes Detected Data

Estimated transportation modes used

Each color represents each mode The colors are changed when people change their transportation modes

Field experiment in Bangkok

Satellite Availability

© Hayashi and Nagai, AIT

PDOP on the Experiment

© Hayashi and Nagai, AIT

Managmet of Orchard, Longan

6 -10 m

- •Longan is medium-size evergreen tree
- •Graft and pruning is required at young plantation stage

•The yield of a tree is from 60 kg to 200 kg[FAO corporate document repository]

•The yield is affected rain fall in the flower season

•Planting interval is 8-12 m due to best production[Longancenter maejo, 2011]

•The fruit bearing age is 7 years olds, and gerontic stage is more than 30 years old[agriculture Research Development Agency,]

Yield factors of plantation trees

Field survey

Crown size measurement

A crown is measured by tape measurement in N-S and E-W direction. A camera is used taking photos in the same direction as crown size measurement.

Detection of Number of Tree

Detection of Tree Parameters

Precise Location Information is required.

- ID
- Date
- Management data
- Tree Parameter
- Yield data
- Etc.

University of The Philippines, Manila

Chulalongkorn University, Bangkok

University of Indonesia, Jakarta

