GNSS-applications in Connected Vehicle and its R&D activities in Taiwan".

Frank C. D. Tsai, Ph.D.

Director, Telematics Research & Technologies Center
Smart Network System Institute (SNSI)
Institute for Information Industry (III)

November 6, 2012
GNSS.asia Taiwan Workshop @ Taipei
Frank C. D. Tsai is a research engineer and the Director of Telematics Research & Technology Center at the Smart Network Systems Institute (SNSI) of Institute for Information Industry (III). He was formerly the Deputy Director of the Networks and Multimedia Institute and a senior manager of III, wherewith he directed the development of WiMAX technology. Prior to joining III, he was a research scientist of Telcordia, Inc. (formerly Bellcore), a senior member of technical staff of AT&T Labs., and a research staff at IBM Zurich Research Lab. He was involved in various data communications and telecommunications technologies and service developments in his prior professional incarnations. He received the B.S. degree from National Chiao-Tung University (NCTU), Taiwan, and the Ph.D. degree from the Courant Institute of Mathematical Sciences (CIMS), New York University (NYU), both in Computer Sciences.

(*) III is a non-profit organization receiving fund mainly from Ministry of Economic Affairs and acts as a government think tank and also involves in ICT research and development. http://www.iii.org.tw
Disclaims

• The presentation shares the views of the speaker ONLY.
• It does NOT represent III’s position, NOR does it bind III to
 – commit to do something, or
 – admit having done something.

~ Frank C. D. Tsai
Smart City

Livable City

High-end Industry

Safe City

Efficient government

Innovation, Compassion, Effectiveness
GNSS-related Mobility
-- Safe Driving with Green Traveling

- USA & EU plan Green Cities with convenient transport
- Major Car Companies offer Vehicle-centric Telematics Service
- Japan, Europe and the United States: actively engaged in the DSRC-based V2I/V2V field trial

Source: partially adapted from CISCO
Intersection of ITS and Telematics
-- redefining driving(moving) experience

Telematics Service

Vehicle Platform

Device

Human

Road

Sea/Air transport system

ITS

Rail transport system

Other transportation systems

V2V

V2D

V2P

V2R

Content Service Provider

source: III-MIC, 2011/10
IoT (Internet of Things) in Mobility

- **D2D (Device-to-Device) [near field]**
 - **V2H (Vehicle to Human)**
 - Vehicle to Driver, Vehicle to Passengers, Vehicle to passerby
 - E.g. Voice Recognition, Gesture recognition, TTS, HUD Display, …
 - E.g. RFID tag in schoolbag for kids, in cane for elderly
 - **V2D (Vehicle to Device)**
 - Smart Phone, Pad, MP3 Players, PND, Image tachograph,…
 - USB, BT, WiFi Direct, …
 - Terminal mode、Remote Skin、Simple UI Protocol、Media Follow-me …

- **GNSS-related [position sensitive]**
 - **V2P (Vehicle to Platform)**
 - VRM, weather, PoI, traffic information,…
 - GPRS, 3G/XML, FM-RDS/TMC, DVB/TPEG, …
 - **V2R (Vehicle to Roadside)**
 - ETC, probe car,…
 - RDS/TMC, DSRC, GPRS (bus positioning …
 - **V2V (Vehicle to Vehicle)**
 - Cooperative safety, platooning
 - DSRC (1609, GeoNetworking, …)
ERTICO towards Cooperative Systems
-- V2V + V2R with Field Operational Tests

Now & Future
(Real Vehicle Verification & Pre-deployment)

Future
(Realize Cooperative System Vision)
1. Fully connected
2. Rich choice of cooperative services
3. Universal availability
4. Ubiquitous coverage
5. Open interoperable platform

Pre-deployment
FOTs
Pilot projects
R&D V2I + V2V
R&D V2I
R&D V2V

Past
(Technology Development)

Innovation, Compassion, Effectiveness
Government Policy/Regulation Matters

<table>
<thead>
<tr>
<th>Promotion Unit</th>
<th>EU</th>
<th>USA</th>
<th>Japan</th>
<th>Mainland China</th>
</tr>
</thead>
</table>
| **Policy motives** | - Integrate cross-border, cross-language ITS
- Address road congestion, traffic accidents and environmental pollution problems | - Address issues such as congestion, accidents and environmental pollution caused by transportation | - Address environmental pollution, as well as the face of an aging society, to provide a safer, more convenient transportation environment | - Integrate across local, cross-ministry ITS
- Address road congestion, environmental pollution problems due rapid vehicle increase |
| **Vision** | **Safety, Mobility, Sustainability (All GNSS-related)** | | | |
| **Current policy direction** | - infrastructure mature, V2V and V2R in real vehicle testing phase
- driven towards three directions (1) V2V2R integration R&D (2) real car test (3) application services | - infrastructure mature, integrated V2V, V2R and V2D technology development and service promotion | - ITS much mature, focusing on safety and on V2V2R technology development toward cooperative ITS | - Currently focused on the integration of the trans-regional, cross-ministry of ITS, V2V2R technology development still in early stage |

Source: III-MIC, 2011/9
III Telematics V2H, V2D, V2P, V2V, V2R
III Telematics Service Mgmt Platform

- Service Farms
- Diagnosis System
- Remote Diagnosis UI
- Service Farms
- Diagnosis System
- III-Vehicle Service & Comm. Gateway UI

- OMA-DM Adaptor
- Application Bundle
- Network Service
- Service Bundle
- UPnP JAR
- Diagnostic JAR
- GPS Status JAR
- E-map JAR

- GPS Service
- OBD II Service
- UPnP Service
- Network Service
- Android / OSGi

- GPS Module
- CAN Gateway
- Other Hardware
- Wireless Network

- GPS
- OBD II
- CAN
- UPnP
III Media Follow-me (I-MF, V2D)

- A driver downloads multimedia (music/video) from Car Vendor's Private Service Cloud to play by the OBU.

- OBU sync meta data information of the media with the driver's handheld devices while playing.

- Arriving at the destination, the driver still revels in the music. S/he can choose to transfer the yet-to-finish media playing to the handheld and take it with him/her!
III-DSRC-Enabled Bus Under Tracking (I-DEBUT; V2R)
Device-based Taxi Dispatching System (D2V; R2V)

- Out of range taxis intentionally not be contacted
- Local broadcasting – radius 500m ~ 1000m
- Coverage Extensible by multi-hop (relay) comm., if necessary

Passenger as “call-center”

- Passenger-id#, GNSS position, preference
- Taxi-id.#, features, ETA (estimated time of arrival)
III-Emergency Vehicle Approaching and Detouring
(I-EVADE, V2V/V2R)

- Through V2V or V2R Communications, emergency vehicles' path is communicated with other vehicles well in advance with IEEE 1609.2-based security mechanism.
 - Emergency path way is cleared for the priority emergency vehicles via V2V.
 - Traffic lights signals can also be prioritized by V2R

System Operation --
- The path of EV can be broadcast to other vehicles.
 - Path comparison
 - Routing/Re-routing
- Traffic light could be controlled by RSU
 - 1609.2 supporting (encryption, decryption, signing or verification)
 - Using SAE-J2735 EVA message
III Precision Position Technology (I-PPT) with Dead Reckoning Navigation (sensor fusion) (V2D)

Source: uBlox

Fig. 7 Mobile mapping system developed at the Institute for Information Industry

Tunnel drive through

Innovation, Compassion, Effectiveness

© 2012 Institute for Information Industry
In cooperation with Michigan Dept. of Transportation on ITS-- Dilemma Zone Problem

1. SPaT info. is missing
2. Different drivers/vehicle types, should act differently.
Dual-Radio SPaT info. Dissemination
-- I-DRIVES (III-Dual-Radio Intelligent Voyager Embedded Solution)

III-Roadside Unit (RSU)

NCTIP over Ethernet

IEEE 1609

V to R

III-Onboard Unit (OBU)

Pad/PND/NB

GIS-enabled GUI

SPaT msg exchange
Over SAE-J2735
With intelligent Algorithm
On OBU in each vehicle

Dilemma Zone Algorithm

Innovation, Compassion, Effectiveness
Dilemma Zone Estimation Algorithm

- Current Speed, Current Distance to Stopline
- Predictive Speed, Predictive Distance to Stopline
 - α-β-γ Kalman Filter

\[
X_{\text{stop}} = V_0 \cdot \delta + \left(V_0 \frac{a_{\text{max}}}{J_{\text{max}}} - \frac{1}{6} \frac{a_{\text{max}}^3}{J_{\text{max}}^2} \right) + \left(V_0 - \frac{a_{\text{max}}^2}{2 J_{\text{max}}} \right)^2 \frac{2 a_{\text{max}}}{J_{\text{max}}}
\]

- Moving distance from the initial deceleration capacity to the maximum deceleration capability
- Moving distance from the maximum deceleration ability to stop

Accuracy (%)

activation Distance (m)

3s
4s
5s
Sys.
• SPaT signals will be generated by a signal controller

• SPaT signals are then sent via Ethernet to a dual-radio RSE (with DSRC/Cellular)

• The DSRC RSE wirelessly broadcast the SPaT signals through both DSRC and cellular radios.

• An approaching vehicle receives the broadcast messages, either one or both, depending on the distance between the vehicle and the RSE.
"LBS Server" sends only relevant SPaT information to its subscribers based on their GNSS locations.
Field Trials in Michigan Oakland County
Concluding Remarks

• Positioning technologies and applications as an important part of a Smart City
 – Taiwanese companies have been strong on user segment side fast-growing on products/systems –
 • handheld devices and applications
 • aviation and maritime equipment/systems
 • car GPS (positioning) applications
 • leisure and other uses (payment, emergency rescue, …)

• Integration of smart handheld and OBU as a Car industry trend
 – Services, such as navigation, emergency rescue, traffic information, offered via OBU, can now also be obtained through the handheld device
 – How to allow OBU to interface with various handheld device to sync information and access applications is main concerns of both Telematics and Vehicle industries
Concluding Remarks (Con’d)

• **Services and contents provisioning as key growing segment**
 – The U.S. E911 Act requires operators must provide positioning services with the mobile phone industry, mostly with GPS now. Accessing position-related applications from “Cloud” is main concerns of both Telematics and Vehicle industries.
 – To increase service offer flexibility, major automakers now actively engaged in developing handheld Mobile Apps for services such as navigation, vehicle condition tracking (e.g. oil, tire pressure), remote control (e.g. door locks, air conditioning, horn).

• **Taiwan strong ICT industry on user segment side can partner with EU on GNSS-related technologies and applications**
 – Components: chipset + receiver -- semi-conductor, multi-constellation (GSP + Galileo + BeiDou + …), sensor fusion (Galileo + IMU + Gyro + …)
 – Devices: smart handheld, OBU, …
 – Applications/Systems: Telematics, LBS, ITS, Surveillance, Emergency Rescue, Disaster Recovery…..
Your Comments Are Much Appreciated